On the relationship between deterministic and probabilistic directed Graphical models: From Bayesian networks to recursive neural networks
نویسندگان
چکیده
Machine learning methods that can handle variable-size structured data such as sequences and graphs include Bayesian networks (BNs) and Recursive Neural Networks (RNNs). In both classes of models, the data is modeled using a set of observed and hidden variables associated with the nodes of a directed acyclic graph. In BNs, the conditional relationships between parent and child variables are probabilistic, whereas in RNNs they are deterministic and parameterized by neural networks. Here, we study the formal relationship between both classes of models and show that when the source nodes variables are observed, RNNs can be viewed as limits, both in distribution and probability, of BNs with local conditional distributions that have vanishing covariance matrices and converge to delta functions. Conditions for uniform convergence are also given together with an analysis of the behavior and exactness of Belief Propagation (BP) in 'deterministic' BNs. Implications for the design of mixed architectures and the corresponding inference algorithms are briefly discussed.
منابع مشابه
Rule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Probabilistic Model for COPD Diagnosis and Phenotyping Using Bayesian Networks
Introduction: This research was meant to provide a model for COPD diagnosis and to classify the cases into phenotypes; General COPD, Chronic bronchitis, Emphysema, and the Asthmatic COPD using a Bayesian Network (BN). Methods: The model was constructed through developing the Bayesian Network structure and instantiating the parameters for each of the variables. In order to validate the achiev...
متن کاملProbabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems
Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...
متن کاملA general framework for adaptive processing of data structures
A structured organization of information is typically required by symbolic processing. On the other hand, most connectionist models assume that data are organized according to relatively poor structures, like arrays or sequences. The framework described in this paper is an attempt to unify adaptive models like artificial neural nets and belief nets for the problem of processing structured infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2005